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Abstract

Finite element modeling has proven useful for accurately simulating scattered or radiated
ficlds from complex three-dimensional objects whose geometry varies on the scale of a fraction
of awavelength. In order to practically compute a solution to exterior problems, the domain
must be truncated at some finite surface where the Soimmerfeld radiation condition is enforced,
either approximately or exactly. This paper outlines a method that couples three-dimensional
finite element solutions interior to a bounding surface, with an efficient integral equation solution
that exactly enforces the Sommerfeld radiation condition. The general formulation and the main
features of the discretized problem arc first briefly outlined. Results for far and near fields arc
presented for geometries where an analytic solution exists and compared with exact solutions to
establish (he accuracy of the model. Results are also presented for objects that do not allow an

analytic solution, and arc compared with other calculations and/or measurements.

The reseat-ch described in this paper was carticd out at the Jet I'repulsion Laboratory, California ingtitute of
Technology, under a contract with the National Aeronautics and Space Administration.



INTRODUCTION

Finite element modeling has proven useful for accurately simulating scattered or radiated
fields from complex three-dimensional objects whose geometry varies on the scale of a fraction
of a wavelength. The solution of interior problems-simulating fields in waveguides and
cavities-has been successfully accomplished using finite clement methods because a bounding
surface, such as the cavity walls, exactly truncates the problem domain. I-he solution of exterior
problems-simulating fields scattered or radiated from structures--is more difficult because of the
need to numericall y truncate the finite element mesh. To practical y compute a solution to
exterior problems, the domain must be truncated at some finite surface where the Sommerfeld
radiation condition is enforced, either approximately or exactly. Approximate methods attempt
to truncate the mesh using only local field infor mation at each grid point, whereas exact methods
arc global, needing information from the entire mesh boundary. This paper outlines a method
that couples three-dimensional finite element (FE) solutions interior to the bounding surface with
an cfficientintegral equation (1) solution that exactly enforces the Sommerfeld radiation
condition.

The problem domain is divided into interior and exterior regions, separated at the mesh
boundary. The unknown sources in the integral equationare directly related to the tangential
fields on the mesh boundary, and the radiation condition is irnplicitly enforced exactly through
the use of the free-space Green's function. Fields in the two regions arc coupled by enforcing
boundary conditions on tangential field components at the mesh boundary, thereby producing a
unique and exact solution to Maxwell’ s equations in both regions.

The choice of the artificial boundary separating the interior and exterior region has a
direct bearing on the solution technique for the exterior region. The selection of a general
arbitrary surface allows the mesh to conform to the body and results in the smallest finite
clement meshing region and hence the smallest FE matrix [ 1-4,7]. The solution of the integral
eguation in the exterior region, however, involves the application of a general moment method

solution which results in the computer storage and solution lime being at Icast proportional to




that of a three-ctimensional surface integral equation formulation, defeating the computational
efficiency of the finite element method and limiting its usefulness. In the unimoment method
introduced by Mci [5], the boundary is the surface of a separable coordinate system (for example
the surface of a sphere). In the method introduced by Boyse and Scidl [6] a surface of revolution
is proposed which results in eigenfunction series expansion in only onc direction (azimuthal).

A complementary issue is the selection of the expansion functions in the finite clement
and integral equation representations. To enforce continuity of fields across the mesh boundary,
the expansion functions used in the integral equation can bc identical or similar to those used at
the boundary of the finite element mesh. As mentioned above, this approach leads to the use of a
general moment method solution, and in addition to limiting computational efficicncy, severely
limits the choice and the number of elements of the cxpansion in the two regions. A second
approach decouples the interior finite element mesh froin that used for the expansion functionsin
the integral equation formulation and thus provides flexibility in the choice and number of
functions most appropriate to field expansion in each region.

The formulation in [6] employing a surface of revolution boundary, suggested a node-
bascd tetrahedral expansion in the finite element region, and aFourier modal azimuthal
expansion together with Hermite polynomial functions along the surface of revolution generator
for the integral equation expansion. A similar two-dimensional formulation for arbitrary
scatterers was given in [7]. The genera] three-dimensional formulation in this paper builds upon
the previous works [6,7], following [6] in the use of a surface of revolution to truncate the finite
clement mesh. The work in this paper utilizes vector cdge elements to discretize the Helmholtz
wave equation, and piccewise triangle functions along the generator to efficiently model the
mesh truncation surface. The vector edge elements naturally enforce the boundary condition at
perfectly conducting surfaces and do not allow the generation of parasitic fields encountered
when applying nodal clements. They aso produce fewer non-zero entries in the resultant sparse

system of equations relative to nodal elements. This approach has broad applicability in



modeling both the near and far fields as shown by the extensive set of calculations presented in

this paper. A complete, and detailed description of this formulation is given in [8].

The formulation has also been extended to radiation problems (e.g., antenna clements or
arrays) by correctly modeling impressed sources within the finite element mesh. The radiation

modeling is reported in [9].

THEORETICAIL FORMULATION
The scatterer and surrounding space arc broken into two regions. an interior part
containing the scatterers and freespaceregion out to a defined surface, and the exterior

homogenous part (Figure 1).

The Finite Element Representation
In the interior region, afinite element discretization of a weak form of the wave equation is

used to model the gecometry and fields, leading to
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His the magnetic field (the }~-equation is used in this paper; a dual fi-equation can also be
written), W is a testing function, the asterisk denotes conjugation, and ¥ x 7 is the tangential
component of ¥ on the surface of revolution S ( dV ). Equation (1) represents the fields internal
to and on the surface S. These fields will bc modeled using a set of proper! y chosen finite
clement basis functions. 1n Equation (1), £, and g, arc the relative permittivity and permeability

respectively, and k, and 1), arc free-space wave number and impedance, respectively.



The Combined-Field Integral Equation Representation

in the formulation of the intcgral equation, fictitious electric (] =ixH ) and magnetic

(171 =-AxkE ) surface currents, equivalent to the tangential magnetic and electric fields just on

the exterior of the boundary surface, arc defined on the boundary. These currents produce the
scattered fieldsin the exterior region. A linear combination of the electric field integral equation
(EFIE) and the magnetic field integral equation (MFIE) isused in this formulation, and it can be

succinctly cxpressed as

ZM[M/n0]+ZJ[]]: V. (2)

where 7y and Z, arc the intcgro-differential operators used in defining the CFIE, and V,

represents the incident field.

Enforcing Boundary Conditions

At the artificial surface of revolution separating the interior and exterior regions,
boundary conditions on the continuity of tangential field components must be enforced. Three
equations arc written for the three unknown field quantities of interest, the magnetic field 77
internal to the volume v and the electric and magnctic surface currents, J and M, on the

boundary. Continuity of thc magnetic field across the boundary is enforced in a weak sense
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where [J isatesting function. This is an essential boundary condition and must be explicitly
enforced.  Continuity of the electric field across the boundary is made implicit in the finite
clement equation in the surface integral term 7 x I, by replacing this term with M, and is termed

anatural boundary condition.



NUMERICAL IMPI.EMENTATION
The above three equations arc discretized using appropriate sets of basis functions. In the

interior region, tetrahedral, vector edge elements (Whitney clements) arc used,

W,.(r)=24,(nNVA,(r)-4,(nNVA,(r) (4)
in which A(r) arc the tetrahedral shape functions and indices (m,n) refer to the two end points of
cach edge. These clements arc used for both expansion and testing (Galerkin's method) in the
finite clement domain.

For the integral equation on the surface of revolution, again applying Galerkin's method,

a set of basis functions with piecewisc linear variation along the surface of revolution generator,

and with an azimuthal Fourier modal variation arc used. Thus both expansion and testing

o

in which 7, (1) is a triangle function spanning the k-th annulus on the surface of revolution

functions arc given as
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surface. The variables r and ¢ refer to the local surface of revolution coordinates, and p isthe
distance from the z-axis to a point on the surface of revolution. Eachannulus spans two
segments along the generator, each referred to as a strip. Adjacent triangles overlap on one
scgment. The formulation is similar to the one used in the development of the CICERO
code[ 10], although other similar formulations arc also possible.

The surface integral in (1) and the first component of the integral in (3) arc termed the
coupling integrals, since with a convenient choice of the unknown in the first and of the testing
function in the second, they arc made to couple interior and exterior field representations.

To evaluate these terms, the FIi basis function W is cvaluatedapproximatelyon me
portion of surface of revolution projected from the triangular facet of the tetrahedron onto a strip.
Such projections arc curved triangles, curved quadrilaterals, or curved pentagons. The
evaluation of the integrals was done numerically. These coupling integrals, as well as the

discretization of the second surface integral in (3), complete the discretization of the problem.




NUMERICAL SOLUTION OF THE I.INItAlI< SYSTEM
Having introduced the basis and testing functions for the volume as well as the surface

unknowns, substitution into the complete set of equations “iclds
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The symbol t indicates (he adjoint of a matrix. Note that both K and C arc sparse, Z, is tri-

diagonal and Z,, and 7, are banded. In particular the system is complex, non-symmetric, and

non-Hermitian.

‘The solution to this matrix equation has been developed using two alternative strategies

depending upon the application. The two approaches arc

1) Solve the entire system in one step using an iterative algorithm for non-symmetric
systems. In this work the non-symmetric variant of the quasi-minimal residual (QMR)

algorithm [11,12] was applied.

2) Solve the system in two steps by first eliminating 11 through the computation of
7., = C'K-'C and then by solving the reduced system




-ZM+7,)=0

ZM+Z,J:=V, ®)
The first step was accomplished by applying a symmetric variant of the QMR iterative
algorithm or a direct solver based on an sparse L. DI factorization. The resulting overall
matrix (8) was treated as being dense, and the solution of this second systcm was

accomplished via adirect dense I.U decomposit ion, since itSsize isrelatively small.

The choice of the solution method is dependent upon a variety of factors, including the
number of right-hand side (RHS) excitation vectors and the efficacy of a prcconditioncr if
iterative algorithms arc used to calculate Z in the second method. The computational cost of
the first method is mainly duc to solving the systein iteratively for each RHS. The major
computational cost in the second method is calculating Z, ; this requires the solution of a
system of equations, K™'C, where C is a rectangular matrix with a possibly large number of
columns for electrically large scatterers. When considering a radiation problem where there arc
onc or a fcw right-hand sides, or a scattering problem with onc or a fcw excitations, the first
method may be preferable. When mono-static RCS calculations arc performed and there arc
upwards of thousands of right-hand sides, the second method is more cfficicnt. This second
approach has been implemented on scalable distributed memory computers, and is reported in

[13].

NUMERICAL RESULTS
Several scatterers have been examined in detail, including dielectric spheres, finite
length (coated) metal cylinders, recta] concsphcercs, including onc with a groove near the cone-
sphere boundary, and metal cubes. The features of some of the meshes arc shown in Table 1. A
surrounding shell is used to model a perfectly conducting object coated with alayer of dielectric
matcrial. As a special case, by choosing the dielectric coating to be air, the scattering from the

perfectly conducting object itself is obtained. Naturally, no elements arc required to model fields



inside perfect conductors. The choice of metallic objects was based on the existence of results
from other available codes or measurements.

Table 1. Obiects and their 1 sh densities

Object ‘ Nodes Elements Edges

Dielectric sphere . 265 . ﬁGS__ 5217

Metal cylinder (coated) . _ 1 . 801”2 243I4IG_. 40476
Mectal conesphere 8882 - il 4_5.4.1 47192

Metal conesphere with groove 4742 15641 24492
Metal cube 15401 73677” | 94288

When considering the dielectric sphere, only the scatterer itself was modeled by the mesh
since there is no need to extend the mesh outside the gcometry of the scatterer. In the case of the
metal cylinder (height/dianictcr = 1.92) the mesh was a shell conforming to the object with a
thickness chosen to fit onc tetrahedral element edge only, keeping the volume of the region
around the recta] scatterer to a minimum. The problem of a metal cylinder coated with a
dielectric material is also treated with this choice of mesh.

The metal conespheres were modeled with a quasi-conforms] mesh, i.e., it has the same
geometry as the object everywhere except in aregion closc to the tip, where the mesh (unlike the
object) does not come to a point. An illustration of one-quarter of the conesphere mesh, cut
along the longitudinal axisin Figure 2. This plot illustrates that two different edge lengths were
chosen to properly model the geometry of the tip of the conical section, as well as the field
variation in the volume around it, while retaining a much larger edge length in the mesh volume
around the hemispherical portion. The conesphere had acone ha] f-angle of 20°, a hemispherical
cap diameter of 2.54 ¢cm, and a conical section length of 3.74 cm. It is sclected from a set of
measured objects currently available.

The metallic cube was enclosed in acylindrical shell of free space which was designed to

be big enough to accommodate onc or two tetrahedra (radially) in the regions between the



corners of the cube and (he terminating surface of revolution. Therefore, with a cube side of 1

cm, the radius of the cylinder was taken to bc 0.8 cm.

RCS and Near-Field Results

A set of RCS calculations, showing comparisons with cither analytical results or with
calculations obtained with the CICERO code, or measurements, is provided in Figs. 3-8. In the
lcgend calculations by this method arc referred to as PHOEBUS, the name of the scattering code
developed in thiswork. Figure 3 refers to the case of a metal cylinder (height = 10 cm, radius =
2.6 cm) coated with a layer of dielectric (€=3) at a frequency of 3 GHz; the thickness of the
layer is 0.2 cm, i.e. 0.035 wavelength in the dielectric. Comparisons arc made with results from
CICERO.

Figure 4 shows the monostatic RCS of a metal conesphere (cone half angle = 20°, sphere
diameter = 2.54 cm) in the E-plane (horizontal polarization). At the frequency of 14 GHz the
height of the scatterer is 2.3 wavelengths. Note that the ¢ = O( direction corresponds to the
middle of the hemispherical cap whereas the ¢ = 180° direction is the tip of the conical section.
Comparisons arc provided with measured data as well as with calculations obtained with the
CICERO code. Figure 5 illustrates the monostatic RCS of the conesphere with a groove located
as shown in the inset of the figure. The excitation frequency is 10 GHz. This conesphere
geometry except for the groove is identical to that of Figure 4. The monostatic RCS for this
object is compared to that of the CICERO result, and for comparison, the RCS of the same
conesphere without groove is shown on the same figure. RCS differences with and without the
groove arc therefore highlighted in this plot. Figure 6 illustrates the RCS results for a metal cube
(side = 1 cm) at a frequency of 22.5 GHz compared with existing mcasurements [ 14] and
calculations from the PATCH integral equation code [ 15]. The incident direction is taken to bc
normal to a face.

Figures 7 and 8 illustrate near-field results computed within the finite clement mesh.

Figure 7 is aplot of the total magnetic field magnitude inside a diclectric sphere in the direction
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specified by the equation (y=0,2= O), i.e, aline parallel to the x-axis. The sphere radius was 1
cm and the frequency 5 GHz. The small discontinuitics in the curve. arc duc to slight variations
in the field components normal to an element face when transitioning from one tetrahedron to an
adjacent one. The nomina value of the edge length was1/20th of the corresponding wavelength
inside the dielectric. Figure 8 is a plot of the tangential phi component of H on a metal cylinder
of length 10 cm and radius 2.6 cm. The frequency is 2 GHz, and the excitation field is incident
normal to the bottom end cap of the cylinder. Shown in this figure arc fields on the bottom and
top end caps, and along the straight section of the cylinder. The local coordinates of each of the
three sections is shown. The set of results on the left arc from the 1' 1101 :BUS code and those on
the right arc from CICERO. The scale indicates the magnitude of the magnetic field for an
incident field magnitude of 1 A/cm. The structure of the nulls in the field and the relatively

strong fields on the bottom cap compared to the top cap are readily apparent.

CONCIUSIONS

“ This paper presents a method to compute the fields of penctrable three-dimensional
scatterers of general shape by coupling a finite clement solution to an integral equation solution
on a surface of revolution. The surface of revolution is chosen to surround the scatterer,
resulting in a minimal amount of volume that needs to be discretized. The usc of the integral
equation provides an exact enforcement of the Sommerfeld radiation condition. Vector edge
elements arc used to discretize the ficlds inside the volume, whereas the integral equation is
discretized on a decoupled surface mesh, introducing a small set of additional basis functions to
the system. A software package named PHOEBUS was developed, and used to simulate the
scattered fields for a variety of objects, as well as fields inside penctrable scatterers and on metal

surfaces.
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LIST OF FIGURES

Figure 1. Geometry of computational domain showing interior and exterior regions.

Figure 2. Finite clement mesh of one-quarter of a metal conesphere showing variable edge length
withincreasing density near tip of cone. Note that only onc clement isnceded over the sphere
scction of the scatterer.

Figure 3. Bistatic RCS of coated metal cylinder (radius := 2.6 cm, height = 10 cm, coating
thickness = 0.2 cm) at 3 GHz.

Figure 4. Monostatic RCS of a metal conesphere (cone half-angle= 20°, diameter of sphere =
2.54 cm, height of conical section = 3.74 cm) at 14 Ghz. Inset shows geometry; units in cm.
Figure 5. Monostatic RCS of the metal conesphere of Figure 4 with a groove as shown in inset
(unitsin cm) at 10 GHz. The RCS for the same conesphere without groove at this frequency is
also shown for comparison.

Figure 6. Bistatic RCS of metal cube (side= 1 cm) at 22.5 GHz.

Figure 7. Magnetic field inside a dielectric sphere (radius = 1 cm, ¢, == 2.0) along the direction
dc.scribed by the equation z=0, y=0, at 5 GHz.

Figure 8. Surface tangential ¢ component of the magnetic field for a metal cylinder (radius =:
2.6 cm, length = 10 cm) at 2 GHz. Shown arc fields on the bottom, straight and top sections of
the cylinder. The scale indicates the magnitude of the field for an cxcitation of 1 (A/cm). The

1'1101H31JS results arc on the left compared to the CICERO results.
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Figure 1. Geometry of scatterer showing intro ior and exterior regions
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